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Introduction 
 
 
Concept Analyst is a Windows-based software system for the calculation of information that 
allows engineers to assess the durability of mechanical and structural components. It performs 
these calculations in a sketching environment that allows very rapid solution of the stress 
distributions through general, two-dimensional shapes. A re-analysis capability allows many 
design changes to be made while the program automatically updates the stresses that are 
displayed on the screen. 
 
The program performs numerical analysis calculations that have long been available in 
commercial software systems. Namely, it performs linear static stress analysis. The advantage that 
Concept Analyst offers over these well-established packages is the simplicity and speed of usage. 
 
While traditional stress analysis software is based on the Finite Element Method (FEM), Concept 
Analyst uses a different technique called the Boundary Element Method (BEM). This is 
fundamental to the speed of model creation and flexibility of the model changing and re-analysis 
included in the program. 
 
This guide presents a theoretical overview of the BEM and its implementation in Concept 
Analyst.  

1 
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Elasticity theory 
 
 
2.1 Basic definitions 
 
An introduction to the concepts and equations of linear elasticity is provided here to make the 
engineer aware of the meaning of the results displayed by Concept Analyst. This is important 
since some quantities are subject to being defined in different ways in different books and by 
different authors. 
 
Concept Analyst uses a conventional, Cartesian coordinate system in which to define the 
geometry, boundary conditions, displacements and stresses. The origin of this (x,y) system is not 
displayed on the screen, nor are the axis directions, but it will always be assumed that the x-
direction is positive to the right and the y-direction is positive upwards. 
 
In this coordinate system we define the following quantities: 
 
x: the horizontal coordinate of a point 
y: the vertical coordinate of a point 
u: the displacement in the x-direction 
v: the displacement in the y-direction 
In addition we define a set of stresses with the implicit sign convention that: 

2 
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 tensile stress shall be positive 
 compressive stress shall be negative 
 shear stress shall be positive if aligned as shown in figure 1.  

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Shear stress directions deemed positive in the sign convention 
 
 
Within this sign convention, the notation to be used will be as follows: 
 
x: the direct stress in the x-direction 
y: the direct stress in the y-direction 
xy: the shear stress in the xy-plane 
 
Strain components will be denoted in the usual way. The same sign convention will be adopted as 
for stress, such that tensile direct strains () will be positive, and shear strains () caused by a set 
of shear stresses as shown in figure 1 will also be positive. 
 
x: the direct strain in the x-direction 
y: the direct strain in the y-direction 
xy: the shear strain in the xy-plane 
 
In this two-dimensional system, some condition needs to be assumed for the behaviour in the 
third direction, i.e. perpendicular to the xy-plane in which the model is defined. Denoting the third 
direction ‘z’, it is customary to define one of the following: 
 

 Plane stress, in which the stress z = 0 
 Plane strain, in which the stress z = 0 

 
Typically, plane stress is applicable for the analysis of thin sheets and plates. Plane strain might 
be used for the analysis of a problem which is two-dimensional because of some prismatic nature 
of the geometry and boundary conditions. 
 
The default condition for Concept Analyst is plane stress. 
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2.2 Stress-strain relations 
 
The stresses and strains in the xy plane may be related by simple concepts of elasticity. 
 
If we assume plane stress conditions (z = 0) then the direct strain in the x-direction, x, is caused 
by the actions of both x and y. We consider both independently and add the strains using the 
principle of superposition. If we adopt the usual notation  for Poisson’s ratio and E for Young’s 
modulus, we can write the effects of the stresses on the strain x as: 
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and by the principle of superposition 
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and similarly for the strain in the y-direction 
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After some algebra, these equations can be written to give the stress components in terms of the 
strains: 
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In plane strain, similar reasoning allows the following relationships to apply: 
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2.3 Stress transformations 
 
While knowledge of the direct and shear stress components x, y and xy allows a complete 
picture to be formed of the stress conditions at a point, they do not immediately provide the 
engineer with the full information to assess durability. In particular, if the shear stress xy is non-
zero, then there will exist stresses in other directions in the plane that are larger than either x or 
y. 
 
By considering the force equilibrium of a piece of material cut at an angle  to the vertical, we 
may derive a set of equations giving the direct stress in a direction rotated through this angle. This 
set of equations is most conveniently expressed using Mohr’s circle for stress, which is shown in 
figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Mohr’s circle for stress (example)  
 
 
Notice some key elements of Mohr’s circle: 
 

 The vertical axis is plotted with positive shear stresses in the downward direction. 
 

 The points (x, xy) and (x, -xy) both lie on the circumference at opposite ends of a 
diameter. 

 
 Rotation in the Mohr’s circle through an angle 2 represents rotation in the real material 

through angle  in the same direction1 
 
The stress 1 is the most tensile stress experienced in any direction in the xy plane at the point. In 
the example of figure 1, this stress would act in a direction rotated clockwise through angle  
from the direction of x. 
 

                                                 
1 It is for this reason that the vertical axis is plotted unconventionally with positive shear stresses in the downward 
direction. If the vertical axis were plotted with positive upwards, the rotation in the Mohr’s circle would be in the 
opposite direction to that in the real material. Many authors adopt this alternative convention. 

 

yxy)  

xxy) 



2
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The stress 2 is the most compressive stress in the xy plane. Notice that, as in figure 1, this may 
actually be a tensile stress if there is no compression in any direction. Likewise, of course, if there 
is no tension in the plane, then the stress 1 may be compressive. 
 
The stresses 1 and 2 are called principal stresses. 
 
There are always three principal stresses that act at a point. In a two-dimensional case, the third 
principal stress will be: 
 

 3 = 0 in a plane stress case 
 

 3 = (x + y) in a plane strain case 
 
 
Concept Analyst makes the following definitions with respect to the three principal stresses: 
 

 The most positive principal stress is termed the maximum principal stress. 
 

 The most negative principal stress is termed the minimum principal stress. 
 

 The third principal stress is termed the middle principal stress. 
 
Notice that these three definitions make no assumptions about whether any of these stresses are 
positive or negative, i.e. tensile or compressive.  
 
 
 

2.4 Failure criteria 
 
Knowledge of the principal stresses allows the engineer to relate the stress conditions directly to 
the material properties to determine the likelihood of yielding failure. For metals, this is 
commonly determined on the basis of one or more of the following criteria: 
 
2.4.1 Maximum principal stress criterion 
 
If the maximum principal stress exceeds the tensile yield stress of the material, then failure is 
deemed to occur. Likewise, failure will occur if the minimum principal stress is a compressive 
stress that exceeds the yield stress in compression. 
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2.4.2 Tresca criterion 
 
If the difference between the maximum and minimum principal stresses exceeds the material’s 
yield stress then failure is deemed to occur. This is derived from the relationship between the 
maximum shear stress and the yield stress. 
 
 
2.4.3 Von Mises criterion 
 
The Von Mises failure criterion is derived from the shear strain energy in a material, i.e. the strain 
energy associated with change in shape and not that associated with the change in volume. Failure 
will be deemed to occur if the expression for what has become known as the ‘Von Mises stress’, 
here denoted VM 
 

 2
13

2
32

2
21VM )()()(

2

1    

 
exceeds the material’s yield stress. Thus, the Von Mises stress is related to the root mean square 
of the three Mohr’s circle diameters in a three-dimensional stress field. 
 
The Von Mises stress is a useful measure since it not only provides a failure criterion that is 
reasonably generally applicable for ductile materials, but it is also formulated as a single stress 
value (VM) that is positive for both tension and compression and can be plotted in contour form 
or in some other easily accessible manner. 
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The Boundary 
Element Method 
 
 
3.1 Introduction 
 
The stresses and displacements produced by Concept Analyst are found using a mathematical 
technique called the Boundary Element Method (BEM). This is similar in many ways to the more 
common Finite Element Method (FEM), which is used by several major commercial stress 
analysis systems. Like the FEM, the BEM works by dividing the object into small parts, and by 
developing a large set of simultaneous equations relating the stresses and displacements in the 
various parts of the component being analysed. However, there are some differences that are quite 
fundamental. This section of the Theoretical Guide introduces the main ideas behind the method. 
 
For the user, the principal difference between the FEM and the BEM is this – the FEM requires 
the volume of the object being analysed to be divided into volumetric elements, whereas the BEM 
requires only the boundary of the object to be divided into elements. This means that, for the two-
dimensional geometries considered by Concept Analyst, only the perimeter of the object needs to 
be defined, leaving the enclosed area empty. This can be clearly shown if the ‘Draw elements’ 

3 
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check box is set in the ‘Edit – Preferences…’ dialog box. After an analysis is run the elements are 
shown, such as those illustrated in figure 3. 
 
 

 
 

Figure 3. Typical boundary element ‘mesh’ 
 
 
In developing the BEM theory in stress analysis in this section, we will be bearing in mind this 
conceptual difference between the FEM and BEM. 
 
The BEM may be applied to a wide range of engineering problems that are governed by various 
differential equations. Examples include heat transfer, acoustics, corrosion modelling and 
electromagnetics. However, the method is not so advanced as the FEM in terms of the range of 
analysis types available, so that commercial BEM software does not extend greatly into problems 
involving time dependency, non-linearity or other forms of varying material properties. 
 
In a nutshell, then, the FEM and BEM may be compared simplistically as follows, at least in the 
commercial software environment: 
 

 The FEM is more versatile 
 

 The BEM is easier to use 
 
Concept Analyst has been developed primarily as an easy-to-use analysis tool. It is for this reason 
that the BEM has been adopted. The technique is also very well suited to the re-analysis 
capability offered by Concept Analyst. 
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3.2 Units 
 
The units used in the analysis do not matter. The only important fact is that they should form a 
consistent set. For example,  
 

 Newtons, metres, Pascals 
 

 Newtons, millimetres, megaPascals 
 

 Pounds force, inches, psi 
 
Concept Analyst defaults to the use of Newtons and millimetres, so that the unit of stress or 
Young’s modulus will be N/mm2. This is equivalent to writing stress or Young’s modulus in 
MPa. 
 
 

3.3 The reciprocal theorem 
 
The idea of the reciprocal nature of structural systems is well known in mechanics. There are 
numerous ways of expressing the reciprocal theorem, one of which is given here as a starting 
point in the development of the BEM for elasticity. 
 
Imagine we have an object and we apply to it two different load cases. Load case A contains some 
forces and displacement constraints. Load case B consists of a different set of forces and 
displacement constraints. The reciprocal theorem states that the work done by the forces from 
load case A on the displacements from load case B is equal to the work done by the forces from 
load case B on the displacements from load case A. That is, 
 

ForcesA x DisplacementsB = ForcesB x DisplacementsA 
 
Engineers familiar with the principle of Virtual Work will recognise this type of formulation of 
the problem. This works for any two arbitrary load cases. 
 
Let us now describe our load case A in a little more detail, by stating that it consists of a set of 
boundary tractions ‘t’, displacements ‘u’ and body forces ‘b’. Defining terms, ‘traction’ is a very 
useful quantity. It is like a surface stress, so that a traction applied perpendicular to the surface 
would be a distributed load (or pressure) applied in this direction, and a traction applied 
tangentially to the surface would be a shear stress. So traction has the same units as stress. 
Traction also has another very useful property that stress does not share – we can resolve tractions 
into their orthogonal components or, in reverse, think in terms of a resultant traction. This is very 
useful in applying traction boundary conditions on inclined and curved surfaces. 
 
The body forces ‘b’ might include, for example, gravitational loads, thermal loads in a stress 
analysis or centrifugal loads. 
 
We will also state at this stage that load case A will be the real load case that we are analysing. 
Load case B is completely arbitrary at this stage, but let us also describe load case B in more 
detail, by stating that it consists of tractions ‘t*’, displacements ‘u*’ and body forces ‘b*’. 
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The work done by the surface tractions and body forces on a set of displacements may be found 
by integrating over the component, so that the reciprocal theorem may be stated 
 

   
V V VV

bdV*utdV*uudV*budV*t                                        (1) 

 
where V is the volume of the object being analysed. Notice that if we have integrals over the 
volume we will require elements through the volume (finite elements). To proceed with boundary 
elements we need to remove these volume integrals and replace them with integrals only over the 
surface. 
 
 

3.4 The boundary integral equation 
 
The first methods of removing the volume integrals in equation (1) are simple. Firstly we 
recognise that the tractions t and t* apply only on the surface S, and that there are no tractions 
anywhere else in the volume. This means that the volume integrals containing tractions t and t* 
may be rewritten as surface integrals giving  
 

   
V S VS

bdV*utdS*uudV*budS*t                                        (2) 

 
Secondly, we will state for simplicity that there are no body forces acting in the real load case 
(A), so that b = 0 everywhere in the component. We remove the volume integral containing body 
force ‘b’ leaving  
 

  
V SS

tdS*uudV*budS*t                                              (3) 

 
which contains only one volume integral. Body forces can be considered in the BEM, for example 
as the self-weight option in Concept Analyst, and this will be considered later in this guide but for 
now we neglect body forces for simplicity. 
 
To remove the last volume integral from the equation, we have to start to be a little more creative. 
In fact, we will do this by starting to stipulate what the load case B might contain (remember it is 
still arbitrary). It is very tempting to suggest for load case B that it should represent a null load 
case, so that t*, u* and b* are all zero. This would indeed remove the last remaining volume 
integral, but would unfortunately remove the two surface integrals also, proving only that zero 
equals zero.  
 
What turns out to be useful is to let load case B take the form of an infinitely concentrated point 
force at some position ‘p’ in the volume. This has three considerable advantages in helping us 
solve the integral equation above. These are: 
 

1. For such a point force we know the displacement (u*) everywhere in the material. This is 
given by the fundamental solution developed by Lord Kelvin. The fundamental solution 
is sometimes termed the “free-space Green’s function”. 
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2. For such a point force, we also know the traction (t*) at all boundary points. This is 
obtained by differentiating the fundamental solution for u*. 

 
3. For such a point force, the volume integral in equation (3) reduces mathematically to a 

single term, u(p), i.e. the displacement of the point p in the real load case A that we are 
solving. 

 
The displacement fundamental solution for 2D linear elastic stress analysis is 
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where: 

- subscripts i and j represent directions (i.e. x or y) 
- u*ij is the displacement in direction ‘i’ at some location due to a concentrated   
  point force in the direction ‘j’ at ‘p’ 
- G is the material’s shear modulus 
- r is the distance from the point ‘p’ to the point at which the displacement is    
  required 
- ij is the Kronecker delta, which takes the value zero if i  j, and 1 if i = j 

 
Some key points about this fundamental solution: 
 

 For any ‘source’ point ‘p’ and any ‘field’ point at which the displacement is required, the 
expression is easily calculated from the geometry of the two points and the material 
properties 

 
 As the distance ‘r’ tends to zero, the natural logarithm term approaches infinity. This 

causes some numerical difficulties with elements that face each other across a narrow gap. 
Concept Analyst includes some features to take care of this effect. This is discussed in the 
Concept Analyst User Guide. 

 
 
By this choice of load case B, then, equation (3) reduces to 
 

 
S S

tdS*uudS*tu(p)                                                    (4) 

 
The volume integrals have all been removed, and the only term that remains in the equation that 
relates to the inside of the material is the first one ‘u(p)’, that is the displacement at the point 
inside the object at which we applied the concentrated point force for the fictitious load case B. 
 
The important point now is to recognise that although we have specified the nature of the load 
case B, that it is a point force, the location ‘p’ of the point force is still arbitrary. So now we 
move the point ‘p’ to the boundary.  
 

 
S S

tdS*uudS*tc(p)u(p)                                                 (5) 
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This has the effect of introducing a multiplier, c(p), as in equation (5). This introduces little extra 
difficulty, because c(p) = 0.5 on any smooth boundary. To be more precise, c(p) takes the value of 
/2, where  is the internal angle subtended at point ‘p’. 
 
Now we have an equation that contains only boundary terms, because ‘p’ is on the boundary and 
the two integrals are over only the boundary surface S. 
 
Equation (5) is called the Boundary Integral Equation. 
 
 

3.5 The boundary elements 
 
On inspection of the fundamental solution given in equation (4), it is readily seen that the 
integration required by the Boundary Integral Equation is going to be very difficult if we are to do 
it analytically. In practice, for all but the simplest cases, the integration has to be done 
numerically using an approximate method. 
 
Engineers will be familiar with classical numerical integration methods such as the Trapezoidal 
Rule and Simpson’s Rule. It is most common for BEM (and FEM) codes to use an approach 
called Gauss-Legendre Quadrature, which provides simplicity and accuracy. Like the Trapezoidal 
Rule and Simpson’s Rule, it helps if we divide the region over which we are integrating into small 
subregions – the finer the subdivision the greater the accuracy. These subdivisions are the 
boundary elements. 
 
So, when the boundary is subdivided into these elements, we can write a subdivided form of the 
Boundary Integral Equation in which the integrals are expressed as the sum of the integrals over 
all the elements, giving 
     

                   
elem Selem S

tdS*uudS*tc(p)u(p)                                                (6) 

 
Another feature of the use of elements is that they allow us a convenient way of formulating the 
problem in terms of a set of unknown values. Like finite elements, boundary elements have nodes 
that are often placed at the end and at mid-points of the elements. These can define both the 
geometry of the element and the displacement, traction and stress variation over the element. 
Concept Analyst’s default element type is the quadratic element, and this element is described 
here. It is illustrated in figure 4. 
 
 
 
 
 
 
 

 
Figure 4. Quadratic boundary element 

 
The three nodes all have (x,y) coordinates defining their location. These may be used to find the 
coordinates of any point on the element, and this is done using an interpolation procedure. For 



Node 3 
Node 1 

Node 2 





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any value of the local coordinate , as defined in figure 4, we can write an expression for the x-
coordinate of the point at this location as 
 

x = N1x1 + N2x2 + N3x3                                                       (7) 
 
where the Ni terms are called shape functions (or interpolation functions) and are functions of the 
local coordinate . For the quadratic element shown in figure 4, the shape functions may be given 
by 
 

N1 = ½ (1) 
N2 = (1)(1)                                                            (8) 
N3 = ½ (1) 

 
Clearly, the y-coordinate of any point on the element may be similarly interpolated. 
 
 

3.6 The BEM as a matrix method 
 
We have seen that the geometry of the element may be defined by interpolation from the 
coordinates of the nodes. An important step forward is to recognise that the displacement and 
traction distributions over the element may be likewise interpolated. Let us imagine, for the 
moment, that we know the x-direction displacement at each of the three nodes on the element, and 
denote these displacements u1, u2 and u3. We would be able to find the displacement at any 
coordinate  using the interpolation 
 

u() = N1u1 + N2u2 + N3u3                                                  (8) 
 
or, expressing this as a vector multiplication, 
 

u() = NTu                                                              (9) 
 
where N is the vector containing the three shape functions and u is a vector containing the three 
nodal displacements. The superscript ‘T’ indicates the transpose of the vector. 
 
It is next important to recognise that the expressions (8) and (9) still hold even if we do not know 
the nodal displacements. If these terms are variables, we can still express any displacement, for 
example, in terms of this interpolation between the variables. This is a very important step, 
because it allows the evaluation of the integrals in equation (6). At the moment, we cannot 
perform the integration because the integrals contain the terms u and t, both of which remain 
unknown. However, writing u and t in the interpolated form from equation (9) 
     

                   
elem S

T

elem S

T dS*udS*tc(p)u(p) tNuN                                      (10) 

 
we can make the important step of taking the nodal displacement and nodal traction vectors, u and 
t respectively, out of the integrals. We can do this because the displacement at node 1, for 
example, takes a single value. As we proceed with the integration and traverse the element from  
= 1 to  = 1, although the displacement at  will vary because of the shape functions, the nodal 
displacements do not. Removing the vectors u and t from the integrals, then, we can write 
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                  t NuN  
elem S

T

elem S

T dS*u dS*tc(p)u(p)                                   (11) 

 
Remember that the point ‘p’ is some location on the boundary at which we place the concentrated 
point force in the fictitious load case B. Let us place this at a node, specifically node 1, and apply 
the load in the x-direction. 
 
We know c(1) from the local geometry. We can calculate u* anywhere we like from the 
fundamental solution in equation (4). We can calculate t* anywhere we like from the traction 
fundamental solution, which for brevity is not stated in this document, but which is calculated by 
differentiating equation (4). For every element we can find values of the integrals, since every 
term in the integral is known. This leads to an expression as follows, in which it is assumed that 
c(p) takes the common value of ½ though this may be different if node 1 is at a corner. 
 

½ u1 + h1,1u1 + h1,2v1 + h1,3u2 + h1,4v2 + …. = g1,1tx1 + g1,2ty1 + g1,3tx2 + ….         (12) 
 
In other words, we have an equation relating the displacements u and v at each node to the 
tractions tx and ty at each node. 
 
Obviously we cannot solve this equation because we have only one equation and many 
unknowns. 
 
Now consider load case B to be a concentrated point force in the y-direction at node 1. Equation 
(11) is integrated again and this gives a different expression 
 

½ v1 + h2,1u1 + h2,2v1 + h2,3u2 + h2,4v2 + …. = g2,1tx1 + g2,2ty1 + g2,3tx2 + ….         (13) 
 
Place the point ‘p’ at every node in turn and apply the point force in both directions at each node, 
and a complete set of equations will be developed. These can be expressed in matrix form 
 

Hu = Gt                                                              (14) 
 
where H is a matrix of all the h coefficients, G is a matrix of all the g coefficients, and u and t 
contain the (as yet unknown) displacements and tractions at the nodes. 
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3.7 The solution 
 
Equation (14) is a statement of a set of N simultaneous equations in which we have 2N 
unknowns. So the system still cannot be solved. At this point, we must reduce the number of 
unknowns, and this is done by applying a set of boundary conditions. The easiest way to do this is 
to recognise that each row of equation (14) contains two unknowns – a displacement and a 
traction – and we require the user to specify one or the other of these two variables. 
 
In most cases this presents no major difficulty. A free surface will have a boundary condition of 
zero traction in both directions. At a displacement constraint, we typically know the displacement, 
but not the traction. Where a load is applied, we know the traction but not the displacement. 

So applying our boundary conditions we arrive at a system shown graphically as follows: 
 





























































































































?

?

?

gggggg

gggggg

gggggg

gggggg

gggggg

gggggg

?

?

?

hhhhhh

hhhhhh

hhhhhh

hhhhhh

hhhhhh

hhhhhh

                             (15) 

 
in which the h and g terms are known, the terms * are the displacements that have been prescribed 
as boundary conditions, the terms • are the tractions that have been prescribed as boundary 
conditions, and the terms ? remain unknown. The ‘h’ and ‘g’ terms in the square matrices are all 
denoted with the same letter in the graphical representation above (i.e. the subscripts from 
equations (12) and (13) have been dropped for clarity). It should be remembered, of course, that 
they all take different values since they represent the evaluation of different integrals. 
 
We now swap columns of the matrices to bring all the displacements and tractions that remain 
unknown to the left hand side. 
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We now know all the terms on the right hand side of the equation, so we can multiply out the 
matrix vector product to leave     
 

Ax = b                                                             (17) 
 
where A is the square matrix on the left hand side of equation (16), containing columns of H and 
G, x is the vector of mixed displacements and tractions that remain unknown, and b is the vector 
result of multiplying out the right hand side of equation (16). 
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Equation (17) may be solved using a variety of techniques. Popular solvers for boundary element 
systems of equations are: 
 

 Direct solver. Usually Gauss elimination with partial pivoting. A combination of row 
operations reduces the system matrix to upper triangular form and then the solution is 
obtained through back-substitution. The advantage of this method is that it is guaranteed 
to arrive at a solution, though for large systems the computations should be done in double 
precision to avoid significant round-off errors. 

 
 Iterative solver. Usually the Generalised Minimum Residual Method (GMRES). This is a 

conjugate gradient type solver that is applicable to the nonsymmetric systems that 
characterise boundary element equations. The advantage of this method is speed, though 
occasionally the solver may fail to converge satisfactorily. 

 
Concept Analyst uses a direct solver for the first analysis and the GMRES solver (with diagonal 
preconditioning) for most re-analysis runs. 
 
The solution of equation (17) provides us with a complete description of the displacements and 
tractions around the boundary. The values of displacement over each element can be computed 
from the nodal values using equation (9), and the traction distribution may similarly be 
interpolated. 
 
Some stress values may be derived directly from the tractions, for example a vertical element will 
have a direct stress x given by the traction in the x-direction and a shear stress xy given by the 
traction in the y-direction. For stress components that do not correspond directly to traction, the 
stress is determined from the strain components that may be found easily from the displacement 
variation over each element. 
 
 

3.8 Internal points 
 
The solution of equation (17) provides us with a complete description of the displacements and 
tractions around the boundary. However, Concept Analyst provides results throughout the 
material in the form of contour plots or internal line plots. In order to obtain results internally to 
the material to generate these plots, the program uses internal points. 
 
An internal point is simply a point inside the material, wholly contained within the closed loop of 
the boundary, at which we find results. 
 
In order to explain how the internal point solutions work, let us return to the integral equation we 
developed immediately before the point ‘p’ was moved to the boundary. This was equation (4), 
which is restated here as equation (18). 
 

 
S S

tdS*uudS*tu(p)                                                    (18) 

 
This is a statement of the reciprocal theorem relating to: 
 

 Load case A: the real load case 
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 Load case B: a concentrated point force at some internal location ‘p’ 
 
But once we have solved the system on the boundary, we know everything contained within the 
two boundary integrals. Evaluating the integrals, using the boundary elements again, we are left 
with a simple expression for the displacement, u(p), at the internal point. 
 
Equation (18) can be differentiated to provide an expression for the stress components at the 
internal point. 
 
 

3.9 Zones 
 
A boundary element zone is a region surrounded by boundary elements. It has a set of material 
properties associated with it, and may have loads and constraints applied to it. Most Concept 
Analyst models consist of only one zone, which contains the entire boundary element model. 
However, there are occasions on which it may be desirable to define a two zone model: 
 

 There are two different regions having different material properties 
 

 There is a pin in a circular hole 
 

 In some circumstances it may provide for faster run times 
 
Consider a two zone problem as shown in figure 5. In this case the zones are adjacent regions 
sharing a straight line interface AB. The left zone, shaded grey (the default colour for mild steel) 
is bonded to an aluminium zone shaded in blue. The aluminium zone, zone 2, contains a circular 
hole. The conditions on line AB are: 
 

 the displacements are continuous, so that the displacements on an interface element are the 
same in the steel as they are in the aluminium 

 
 the tractions are equal and opposite, so that Newton’s 3rd law is enforced at each node on 

the interface. 
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Figure 5. Two zone model example 
 
This model is analysed by meshing as normal, though there is only a single line of elements/nodes 
on the interface, and these are shared between the two zones. Let us denote the displacements and 
tractions as follows: 
 
u1, t1: displacements and tractions on the nodes wholly in zone 1 
u2, t2: displacements and tractions on the nodes wholly in zone 2 
u12, t12: zone 1 displacements and tractions on the nodes on the interface line AB 
u21, t21: zone 2 displacements and tractions on the nodes on the interface line AB 
 
Interface conditions are therefore: 
 

u12 = u21                                                             (19) 

 
t12 = t21                                                             (20) 

 
We build a set of boundary element influence matrices of the type shown in (14) and (15) for each 
zone. It is convenient to think of them in a partitioned form so it is clear which parts of the 
matrices multiply which terms in the vectors. For zone 1 we build the system 
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and for zone 2 
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These are combined to give a single matrix expression: 

A 

B 
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where the minus signs arise because of equation (20) being applied. 
 
Now the t12 sub-vector is compressed to remove duplicates at shared nodes on the interface. It is 
assumed here that, while tractions on the boundary may be discontinuous because of step changes 
in the load applied, the internal tractions cannot become discontinuous. The tilde symbol ‘~’ 
indicates the associated compression of a submatrix or vector. 
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We now compress also the u2 sub-vector to remove duplicate displacement degrees of freedom at 
the interface ends (‘boundary interface nodes’). These displacements will of course be the same in 
zone 1 as they are in zone 2. 
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The submatrices HE and HF are mostly comprised of zeros, but include non-zero columns that 
multiply the boundary interface node displacements. Now move the subvector t12 and associated 
G submatrices to the left hand side 
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This is manipulated in a similar way to that described in section 3.7, i.e. boundary conditions are 
applied to reduce the number of unknowns to equal the number of equations, and this combined 
system is solved to give the displacements and tractions that were not specified as boundary 
conditions. 
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3.10 Self weight 
 
If the analysis is to consider self-weight loads, or loads from any given constant acceleration 
experienced by the body under analysis, it is necessary to add an extra volume integral term to the 
boundary integral equation, i.e. 
 

  
VS S

bdV*utdS*uudS*tc(p)u(p)                                              (27) 

 
in which b* represents a general body force term, so that in the case of self-weight it will 
comprise the effects of the distributed mass in the body undergoing acceleration. Notice that the 
integration must take place over the volume of the object, so that some further action will be 
necessary to implement this is a boundary-only framework such as Concept Analyst. The most 
effective way to do this is through the “Galerkin vector” approach, which transforms the volume 
integral mathematically into an equivalent surface integral. This results in (27) being modified to 
 

  
SS S

PdStdS*uudS*tc(p)u(p)                                              (28) 

 
in which P is a function of the geometry and material properties, rather like the fundamental 
solution (4). The integral of P can easily be evaluated to give a term on the right hand side to be 
added to the boundary element system. This is carried through the rest of the theoretical 
development to give additional terms on the right hand side of the equation (17) that is solved to 
give the stresses and displacements. 
 
It is important to recognise that if the above approach is used to compute the effects of body 
forces, the fundamental solution for displacement must include an extra constant term, i.e. 
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3.10 Crack models 
 
The conventional method of collocating equation (11) at all nodes will fail for crack models since 
there are nodes on opposing crack surfaces that are in the identical location. In this case, then, 
there will be duplicate equations in the set of simultaneous equations derived using the BEM, so 
we have fewer independent equations than unknowns and no solution is possible. If the model 
contains cracks, then, Concept Analyst uses a variant of the BEM known as the Dual Boundary 
Element Method (or Dual BEM).  
 
Here the displacement boundary integral equation (11) is used when collocating at all nodes on 
one crack surface (and when collocating at all non-crack nodes), and the traction boundary 
integral equation is used when collocating on the opposing crack surface. The traction boundary 
integral equation is derived by differentiating the displacement boundary integral equation. This 
provides for different equations when collocating at coincident nodes on opposing crack surfaces 
and allows a solution to be obtained. 
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The use of the traction integral equation means that the boundary integrals are of a higher order of 
singularity than in the conventional equation (11), and this has implications on the analysis. In 
particular, the equation is valid only if there are certain continuity requirements satisfied at the 
collocation point. These requirements are observed by the use of discontinuous boundary 
elements, in which the nodes are no longer at the element ends (and therefore shared by adjacent 
elements) but are now moved away from the element ends, so that they are not shared by adjacent 
elements. 
 
The mode I and mode II stress intensity factors, KI and KII respectively, are calculated using the J-
integral approach. This involves evaluating the integral of a function of strain energy over a path 
surrounding the crack tip. This is done over a circular path in Concept Analyst, the path centred 
on the crack tip and the radius of the circle being given by the distance from the crack tip to the 
mid-point of the second element on the crack surface (i.e. the element adjacent to the element 
touching the crack tip). Notice that as the crack tip approaches the boundary of the object, this 
may fail because the path leaves the problem domain. 

 

3.11 Crack growth 
 
Crack growth is assumed to be through the fatigue mechanism of sub-critical growth under 
oscillatory loading. Cracks can propagate until they become critical, i.e. when the stress intensity 
factor, KI, reaches the fracture toughness, or when they break through another boundary. Breaking 
through is deemed to occur when the size of the plastic zone that develops ahead of a crack tip 
exceeds the distance to that boundary. Although Concept Analyst is only performing linear elastic 
analyses, the plastic zone size can still be estimated. 
 
There are many crack growth laws that have been determined empirically, but Concept Analyst 
uses the Paris law, which states that the crack growth rate per cycle, da/dN, is given by C(K)m, 
where C and m are material constants, and K is the range of stress intensity factors experienced 
over the loading cycle. If the loading cycle consists of both tensile and compressive loads, the 
compressive part is neglected in calculating K since the crack may be assumed to be closed and 
no longer acting as a crack.  
 
K is computed in Concept Analyst by making use of the stress ratio, R, which is the minimum 
stress applied in the loading cycle divided by the maximum stress in the cycle. 
 
At each crack increment, cracks are assumed to propagate in the direction perpendicular to the 
maximum circumferential stress, and a predictor-corrector algorithm applied to give the correct 
direction independent of the crack growth increment. For this reason, several analysis runs can be 
performed within each crack increment before proceeding to the next increment. 
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Implementation in 
Concept Analyst 
 
 
4.1 Introduction 
 
Concept Analyst is a Windows based software system that uses the Boundary Element Method to 
solve two-dimensional problems in elastostatics. It is written in the language C++ and makes use 
of the Microsoft Developer Studio foundation classes. 
 
Unlike most analysis systems, it does not require the user to build the geometry by defining first 
points, then lines, then elements, etc. Instead, it uses higher level geometric entities called shapes; 
these may be circles or rectangles, and rectangular shapes may then be modified by the addition 
of more points to generate irregular closed polygons. Any vertex or vertices of these polygons 
may be given a fillet radius, or otherwise modified to become a circular arc. Further, any edge of 
a general polygon may be modified to be defined as a B-spline. Circular shapes may be modified 
only by redefining their diameter. 
 

4 
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Decisions about meshing are taken by the program, which contains a set of automatic meshing 
routines that have been carefully developed to produce appropriate meshes for a wide range of 
geometries. All elements are quadratic, ‘isoparametric’ line elements. The user may also select a 
coarse, standard or fine mesh, thereby reflecting the balance sought between the run time and the 
accuracy. 
 
In general, the use of the default setting, i.e. standard mesh, should give a good engineering 
balance. 
 
 
4.2 Element type and shape numbering 
 
The quadratic element used by Concept Analyst is shown in figure 5. 
 
 
 
 
 
 
 
 
 

Figure 5. Quadratic boundary element 
 
The shape functions for the quadratic element are: 
 

N1 = ½ (1 – ) 
N2 = (1 – )(1 + ) 
N3 = ½ (1 + ) 

 
The element is oriented in Concept Analyst such that in travelling from node 1 to node 3, the 
material to be analysed is on the left. This means that elements are defined in a counter-clockwise 
direction around the outer boundary and in a clockwise direction around holes and any other 
internal boundaries. This direction of definition is generated automatically by Concept Analyst. 
The outer shape, which is also determined automatically, is then defined in a counter-clockwise 
direction, and all others in a clockwise direction. 
 
 
4.3 Automatic meshing 
 
Concept Analyst defines elements according to the following scheme, which is based on keeping 
track of the length of the element at each end of every line. 
 

1. Set the maximum element size to be equal to 2.5%, 5%, 9% or 17% of the largest problem 
dimension for (respectively) superfine, fine, standard and coarse mesh density. Apply this 
to both ends of all lines. 

2. Identify re-entry corners and set element size in those areas to 10% or 20% of the 
maximum element size, depending on the severity of the angle. 



Node 3 
Node 1 

Node 2 





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3. Identify short line segments and arcs. Set an appropriate element length at each end to 
ensure that a minimum number of elements is defined on the line. The minimum number 
is 1 for a straight line and varies for circular arcs depending on the user-selected mesh 
density. 

4. Compare element sizes at the two lines that meet at each vertex. Reduce the large to 1.5 
times the smaller if it is greater than this value. 

5. Compare start and end elements on each line. If elements cannot be graded along the 
length of the line such that no element is no more than 1.5 times the length of its 
neighbour, reduce the larger end element size to accommodate this limit on grading. 

6. If any changes have been made in steps 4 and 5, return to step 4. 
7. Generate the mesh for the model from the element sizes at the end of each line. 
8. Loop through all elements to ensure no element is too long in comparison with the 

distance from a node on another element. If such a case is found, the element concerned is 
subdivided, and may be subdivided again, until each element is no longer than twice the 
distance to the nearest node. 

 
 
4.4 Internal point definition 
 
Concept Analyst defines internal points automatically over the region enclosed by the boundary. 
As shown in section 3.8, these are points at which the program computes the displacements and 
stresses after the boundary solution has been found. This involves a small amount of extra 
computation for most models. The internal points are used for one major reason – that they 
provide information on the stress and displacement results inside the material so that accurate 
contour plots can be drawn. For the plots to be reasonably accurate: 
 

 There should be a sufficient number of internal points to cover the area of the material 
 

 There should be a concentration of internal points in regions of high stress gradient, e.g. 
around fillets, holes and other stress risers. 

 
 The internal points should not be placed too close to the boundary (within about one 

quarter of the element length). 
 
The program defines internal points automatically when the Analyse command (‘Go’ button) is 
selected. This is done using the following scheme: 
 

1. Define a ring of internal points around every fillet 
 

2. Define four concentric rings of internal points around each circular hole 
 

3. Define lines of internal points along lines that are likely to act as a neutral axis in bending 
(this gives improved contour plots for problems dominated by bending). 

 
4. Scatter more internal points at random over the material, using a total number of internal 

points the same as the number of nodes (this has been found to give a reasonable number 
of points for most problems) 

 
5. Triangulate to generate a triangular mesh joining all nodes and internal points. 



Concept Analyst Theoretical Guide 3.0  beta                                                                                                         28 

 
6. Smooth the internal points iteratively so that the mesh of triangles is smooth and well 

graded 
 
Internal points are not displayed on the screen. It is not possible to set up the program so that 
internal points are not created. 
 
The ‘Report Quality Contours’ feature, available in the ‘Edit – preferences’ menu, allows the user 
to generate a plot having improved clarity of contour definition. This is done by defining, in Step 
4 (above), a total number of internal points equal to the maximum allowable by the program. The 
greater number of internal points gives greater coverage of the material region and higher 
definition contours.  
 
If initiated when results are available and contours are being shown, this feature causes a re-
analysis to be performed so that the extra run time is short. Otherwise the greater number of 
internal points will be used for the first analysis after the feature is set. 
 
The ‘Report Quality Contours’ feature is automatically turned off on the subsequent full analysis 
or re-analysis. It is also not available to be set as the user’s default setting. This is because the 
standard quality contours are sufficient for most purposes, and run considerably more quickly. It 
is intended, therefore, that users obtain the contour plots they require and then, just before writing 
contour plots to the report file, set the report quality contours if greater contour definition is 
required. However, once an analysis has been performed using report quality contours, the high 
definition plots may be displayed for multiple contour plots of different quantities until a new 
analysis or re-analysis is performed. 
 
 
4.5 The analysis 
 
On selection of the ‘Analyse’ command (‘Go’ button) the analysis proceeds according to the 
theory as defined in section 3 of this guide. The mesh is produced, and also internal points, and 
integration begins in formation of the governing matrix. 
 
Almost all of Concept Analyst’s calculations are performed in core memory so that performance 
is optimised. Notice also that the architecture of the program is such that the graphical and 
analysis features of the software are contained in the same program and share the same database. 
This precludes the need for writing and reading of data and results files, which for small analysis 
problems comprise a significant portion of the run time. 
 
The matrices H and G are not normally formulated explicitly; instead, the matrix A and vector b 
are formed during the integration phase by considering the boundary condition on the field 
element during each source point – field element integration. This saves a considerable amount of 
memory space and run time. The A matrix is stored to a file once it is generated completely, and 
before the equation solution starts.  
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4.6 Adaptive mesh refinement 
 
Concept Analyst includes an option for the program to undertake adaptive mesh refinement. This 
is an iterative process that uses multiple analysis runs of the same problem, with progressively 
improving meshes, in order to converge to an improved set of results.  
 
There are two main components of an adaptive analysis scheme: 
 

Error indicator. It is important to estimate the level of accuracy in a boundary element 
solution. This is used as both a stopping criterion, when the error has diminished to a 
sufficiently small value, and a guide towards mesh refinement if significant errors still 
remain. Thus it is useful to have both global and local properties – a global error estimator 
is useful as a stopping criterion and a local error estimator is required if we are to refine the 
model efficiently. 
 
Mesh refinement scheme. If the error indicator shows that improved results would 
result from refinement of the mesh in a certain area of the model, there are various different 
approaches to carry out that refinement. Classical ‘h-refinement’ involves subdivision of 
existing elements so that more elements are used where they are required. This is the 
approach used in Concept Analyst. Another approach called ‘p-refinement’ involves 
improving the model by increasing the order of the boundary elements used, e.g. if the 
errors exist on a linear element, then in the next iteration it might be made quadratic.  

 
The error indicator used in Concept Analyst is based on the von Mises stress, which is an 
expression used in the von Mises failure criterion (section 2.4.3). The von Mises stress, VM, is 
given by 
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so it is based on the square root of the sum of the squares of the three Mohr’s circle diameters. 
Von Mises stress is often used as a useful quantity to display because it gives a single stress value 
at a point, that relates directly to a widely used failure criterion, and which remains positive for 
both tensile and compressive stress states. 
 
The error indicator is based on the discontinuity in von Mises stress between neighbouring 
elements. The stress can be computed over each element totally independently, and this will result 
in two values being available at the end of each element. In graphical displays of results, these 
two values are averaged to give a smooth display. However, it has been found that the size of the 
discontinuity provides a useful error estimator. 
 
In the adaptive option, an element will be subdivided if: 
 

 The discontinuity in von Mises stress at one or both of its ends is greater than 1.5% of the 
maximum von Mises stress anywhere in the model, and 

 
 The range of von Mises stress over the element is greater than 1.5% of the maximum von 

Mises stress anywhere in the model, and 
 



Concept Analyst Theoretical Guide 3.0  beta                                                                                                         30 

 The subdivision would not give rise to an element shorter than 1.25% of the length of the 
line on which it lies. 

 
An element i would also be subdivided if: 
 

 An adjacent element i1 or i+1 becomes subdivided to a length less than one quarter of 
the length of element i. 

 
If, in a particular iteration, no elements satisfy the above requirements, the program deems the 
solution satisfactory. 
 
The percentages used in the above criteria have been determined through a series of numerical 
tests. 
 
An adaptive analysis may use as a starting point the Coarse, Standard or Fine mesh setting 
(selected in Edit – Preferences…). Use of a coarse mesh is recommended since the adaptive 
refinement will proceed rapidly and will make a more optimal use of the elements in the final 
mesh. 
 
 
4.7 Re-analysis 
 
Once the analysis has been completed and the contours of results displayed on the screen, many 
types of geometric change to the design will then cause a re-analysis to be initiated. This means 
that a very rapid analysis is performed, in which as much as possible of the previous analysis 
computation is re-used so that updated results are presented as soon as possible. 
 
On most geometric changes in 2D, the changes are limited to a comparatively small portion of the 
boundary. This means that the boundary element mesh for the new model is to a large extent 
identical to that used for the previous model. For example, figure 6 shows a change in fillet 
radius. The elements on the fillet itself, and those on the two adjacent tangent lines, are the only 
elements modified.  
 
 

              
 

Figure 6. Modification of fillet radius and consequential mesh changes 
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As a result of this, the A matrix will also be largely similar to that generated in the previous 
analysis. Only the shaded portion of the A matrix (shown in figure 7) is required to be updated 
(these are the rows and columns relating to the modified elements and nodes).  
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Modified portion of A matrix shown shaded 
 
This clearly offers some considerable time saving over the full analysis. The solution phase then 
follows using an iterative solver (diagonally preconditioned GMRES). In the iteration, the first 
guess at the solution is provided by the previous solution. Since this is often similar to the revised 
solution to the updated model, the iteration is offered the benefit of a good start. 
 
Figure 8 shows the time savings to be gained by using re-analysis over a full analysis. The saving 
will depend strongly on the extent to which the analysis model is changed, i.e. the proportion of 
the total number of elements that are moved. The figure shows results from a mixed set of 
problems of different sizes and different character, and shows the proportion of the full analysis 
time that is required to complete the re-analysis. 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8. Time savings to be achieved by re-analysis 
 
 
4.8 Acceleration of re-analysis for dynamic contour display 
 
Version 1.9 and later of the software allows the facility for contour displays of results to be 
updated rapidly so that for small problems the display is updated in real-time as a geometric 
change is being carried out. For example, as a hole is being moved the maximum principal stress 
contours may be continuously updating to reflect the results for the latest geometry. This is the 
result of a recent research programme into acceleration of boundary element computations. 
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The three major numerically intensive stages of a boundary element analysis are 
 

 Integration of the boundary integrals to find terms that will populate the system matrix A. 
 Solution of the set of simultaneous equations in matrix form, Ax = b. 
 The solution at internal points, which again involves evaluation of boundary integrals. 

 
All three phases have been accelerated, though the acceleration of the first and third phases are 
identical in method as they relate to integration. 
 
Integration has been accelerated by the use of surface fit expressions to approximate the values of 
the boundary integrals in (11). These integrals are functions of: 
 

 Material properties 
 The location of the source point ‘p’ 
 The local geometry and orientation of the element over which the integration is taking 

place 
 
If we keep the material properties constant, e.g. take the elastic constants for mild steel, we can 
consider the integrals to be functions of a few geometric variables, i.e. 
 

 Angle , being the anticlockwise angle from the horizontal of the vector from the source 
point ‘p’ to the mid point of the element 

 Angle , being the orientation of the element 
 Non-dimensional distance Rm, being the distance from point ‘p’ to the mid-point of the 

element divided by the element length. 
 
The values of the boundary integrals vary smoothly as these geometric parameters are changed, 
and can be displayed as a surface plot on axes of these geometric variables. Using the method of 
least-squares, a regression fit can be made to these surfaces. Using care to select the most 
appropriate functions to include in the fit, some extremely efficient expressions can be found. For 
example, the integral for the mid-node of a vertical element may be expressed as 
 

  7
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It is considerably faster to evaluate this expression than to use the conventional numerical 
integration procedures. A total of 384 surface fit expressions have been generated, using the 
elastic properties of mild steel, so that all integrals over flat elements may be considered in this 
way in Concept Analyst. 
 
The other numerically intensive phase of the computation, the solution of the system of equations, 
has been accelerated by use of an iterative solver. The GMRES solver is used, as in previous 
versions of Concept Analyst for re-analysis, but from version 1.9 a change has been made to the 
way the solver is ‘preconditioned’. Preconditioning is modification of the system of equations 
being solved to make them more amenable to iterative solution, and thereby improving the 
convergence rate of the iteration to solution. 
 
The best preconditioner that can be found to solve the system Ax = b is the inverse of A, i.e. A-1. 
This will guarantee convergence in only one iteration. However, we do not have this inverse (if 
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we had, we would simply use it to solve the equations directly using x = A-1b). What is needed is 
an approximation to the inverse of A that may be found quickly and easily. 
 
The strategy used in Concept Analyst is to solve the full analysis (on pressing Go) by use of an 
LU-decomposition method. This produces a lower triangular matrix, L, and an upper triangular 
matrix, U, that multiply together to give A. It is straightforward to find the decomposition. Since 
the matrices are triangular the solution to LUx = b can be found by two backsubstitution phases 
as in the final stage of a Gauss elimination solver. These matrices L and U are stored and are later 
used as a very effective preconditioner for solving the re-analysis system in which a modified 
matrix A is to be solved. Typically the converged solution to the re-analysis problem is found in a 
few iterations, giving a re-solve time 10-30% of the time it would take to solve the system using, 
say, Gauss elimination. 

 
4.9 Theoretical limitations 
 
At this point we present one fundamental problem with boundary elements; the problem of 
elements close together back-to-back. The problem results from the fact that it is necessary to 
perform numerical integrations of the fundamental solutions over elements. 
 
The form of the fundamental solution for two-dimensional stress analysis is given in equation (4). 
Notice that it contains a term ln(1/r), where ‘r’ is the distance from the node ‘x’ at which we place 
the fictitious point force to the point ‘y’ at which we evaluate its effect. Other fundamental 
solutions for other types of problem also exhibit similar behaviour, in that the denominator 
contains ‘r’, or sometimes r2 or even r3. 
 
Consider now the situation in which two elements face each other back-to-back across a narrow 
gap, as shown in figure 9. The material may be outside the elements, as in the case of a narrow 
slot, or in between the elements, as in the example of a narrow strip of material. It does not 
matter; the problem remains. 
 
 
 
 
 
 
 
 

Figure 9. Elements close together 
 
If the point force is at ‘x’ on one of these elements, and we are integrating over the other element, 
then the distance ‘r’ is going to approach zero somewhere over the range of integration. As r0, 
then the fundamental solution will tend to infinity. It causes problems for most integration 
schemes when the function being integrated passes close to infinity. 
 
For this reason, users will find that Concept Analyst automatically defines more elements on thin 
sections than it will in cases with a lower surface area/volume ratio. The reason is that the 
important factor is (element size  separation). In practice, it is desirable for the element size to be 
no more than around twice the separation. Problems containing more elements will require more 
run-time to solve. 
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For related reasons, boundary elements are not well suited to the analysis of very thin sections. It 
is advised that the aspect ratio of objects being analysed, or of parts of objects being analysed, 
should not exceed 20. 
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Comparison with the 
Finite Element 
Method 
 
 
5.1 Introduction 
 
As has been described throughout this document, Concept Analyst calculates the stress and 
displacement fields for general problems using the Boundary Element Method (BEM). However, 
this type of calculation is most commonly performed using the Finite Element Method (FEM). 
This section compares the two methods. 
 
 

5 
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5.2 The Finite Element Method 
 
In brief, the FEM is similar in concept to the BEM, but instead of defining only the surface area 
of the object, the entire volume must be defined. This means that 3D models must be defined in 
terms of three-dimensional brick elements, and that the 2D problems analysed by Concept 
Analyst would require two-dimensional finite elements (triangles and quadrilaterals) to be fully 
defined. 
 
The method is, like the BEM, based on the use of matrix algebra to solve large systems of 
simultaneous equations. It also uses the concept of node points to define the displacement on each 
element, and the use of shape functions to describe the variation of this displacement over the 
element. These shape functions are identical to boundary element shape functions, though of 
course they have to consider an extra dimension. 
 
The FEM relies on the idea of stiffness, k, being defined as a fundamental relationship between 
force, f, and displacement, u. 
 

f = ku                                                       (30) 
 
Equation (30) might easily be applied to a one-dimensional problem such as a spring in 
longitudinal extension, so that the extension of the spring may easily be found for any value of 
applied force. 
 
For a two-dimensional, rectangular, finite element, we can derive an analogous expression 
 

f = ku                                                      (31) 
 
in which f is now a vector of forces applied at the nodes on the element and u is a vector 
containing the nodal displacements. Both the force and displacement vectors need to be compiled 
containing components in the x- and y-directions. The term k represents a square ‘stiffness 
matrix’ defining the behaviour of the element, and this will be a function of the element geometry 
and material properties. 
 
In practice, we determine the stiffness matrix, k, for each element by performing an integral over 
the element, and (like BEM) this is most commonly done using Gauss quadrature. 
 
Of course, nodes will be shared between adjacent elements, and therefore the displacement of any 
one node will be represented in more than one of the element-based equations of the form of 
equation (31). In order to solve the problem so that all element stiffness equations are satisfied, it 
is necessary to build them into a single, ‘global’ system 
 

F = KU                                                    (32) 
 
where F is a vector containing the forces at every node in the model, U is a vector containing the 
displacements at every node in the model, and K is a square stiffness matrix containing all the 
terms in the individual element stiffness matrices. For large problems, then, the matrix K can 
become very large indeed. Fortunately, if the problem is carefully defined so that no element 
contains two nodes with very different node numbering, the matrix becomes strongly ‘banded’, as 
shown in figure 10.  
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Figure 10. Typical FEM stiffness matrix K showing banding 
 
The non-zero terms are restricted to the area of the matrix shown shaded in the figure. This 
feature of the matrix makes it efficient in terms of both storage (since the many zero terms do not 
need to be stored in memory) and solution time (since there are a number of highly developed 
solution procedures for this type of matrix). 
 
Once the system of equations (32) has been formed it needs to be solved to find the unknowns, 
which (unlike the BEM theory presented in section 3) will comprise only displacements. In order 
to do this, firstly the equations that correspond to displacement constraints should be eliminated 
from the system, otherwise the system will be singular and insoluble. The solution proceeds to 
compute the displacements at each node and in each direction. 
 
From the displacements the strain components in each element may be found by differentiating 
displacement components with respect to the coordinate directions. From these strains it is 
straightforward to find the stress components using the principles of elasticity given in section 2. 
 
 

5.3 Accuracy comparison 
 
It is difficult to compare the accuracy of the BEM and FEM directly. Both methods require a 
sufficient number of elements to ensure the best accuracy, and since they are different techniques 
they will require different meshes in order to achieve any given accuracy. The number of 
elements required is strongly dependent on the problem being solved: the geometry, the nature of 
any loading, the presence of any discontinuities, the severity of any stress concentrations, etc. 
 
What can be stated with some confidence is that for general problems, a boundary element model 
will contain fewer elements than a finite element model to achieve the same accuracy in stress 
results. In many cases, the number of elements will be far fewer. Of course, this is largely because 
the boundary elements are defined only on the surface, but still the boundary elements would 
normally be larger in size than the finite element size required for the same accuracy. 
 
Since the boundary element method requires the user to define far less information 
(geometrically) than does the finite element method, it is perhaps surprising that the BEM is 
capable of producing solutions of great accuracy. An intuitive way of expressing this is to say: 
every element we use to define a model is an approximation to reality, and in the FEM we make 
these approximations throughout the volume, whereas in the BEM we make these approximations 
only on the surface. Fewer approximations, fewer errors.  
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In a little more analytical way, we can see some more theoretically based reasons for the extra 
accuracy in stress solutions that boundary elements can offer. In particular, this is evident from 
the way the stresses are calculated. 
 

 Most FEM programs calculate first the displacements, then differentiate to obtain strains, 
then use elasticity relations to obtain the stresses. The differentiation is an important step, 
since the procedure reduces the order of the approximation. For example, a finite element 
model that is quadratic in displacement will be capable of giving only linearly varying 
strains, and therefore stresses. 

 
 The BEM solves for the unknown vector x (from equation (17)), and this contains both 

displacement and traction components. Many stresses can be obtained directly from the 
tractions, and this is done without differentiation. (Some stress components still require 
differentiation). 

 
Another reason for good stress accuracy from boundary elements is that the peak stresses almost 
always occur on the boundary in a linear elastic analysis. Since this is where the BEM calculates 
its solutions, it is natural to expect the accuracy to be at its best here. The most accurate results 
obtained in a finite element are inside its volume, and some approximations are involved in 
extrapolating these more accurate results to the boundary. 
 
 
 

5.4 Versatility 
 
Without question, the single most important drawback to boundary element methods is their range 
of applications. Certainly in the commercial BEM software available today, there is very limited 
capability to solve problems involving non-linear material properties or time dependence.  
 
Here the FEM has a great advantage, being able to solve a much wider variety of problem types. 
 
 
 

5.5 Usage of computer resources 
 
Since the BEM uses far fewer elements, and therefore has far fewer degrees of freedom than the 
corresponding finite element model, it is natural to expect it to require far less memory, disc 
storage and computation time. This is true to some extent, but not completely true. 
 
The memory and disc space requirements are less than for the FEM for most problems of the type 
that Concept Analyst is typically used for. Although the BEM matrix is full and unsymmetric, and 
therefore needs to be stored in its entirety, it is considerably smaller than the corresponding finite 
element global stiffness matrix, so that the storage requirements may be reasonably be expressed 
as the shaded areas in the matrices shown in figure 11. 
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Figure 11. Storage requirement comparison 
 
As the problem size becomes larger, especially in three dimensions, the fact that the BEM matrix 
in full, and not banded, becomes increasingly important and the disc storage requirement may 
become excessive. 
 
Users should not expect BEM run times to be much less than those for the FEM. Often the 
solution times are approximately the same. Sometimes the BEM can require considerably longer 
than the corresponding FEM model.  
 
 

5.6 Automation and re-analysis 
 
Concept Analyst contains a high degree of automation of the decisions that have traditionally 
been made by expert analysts, including the type of elements to use, the number of elements and 
the way these elements are distributed around the geometry in order to solve most accurately and 
efficiently for stress concentrations. As has been seen in this document, the program also makes 
extensive use of re-analysis to update stress results as a design geometry evolves. 
 
It is clearly simpler to place boundary elements on a geometry more reliably and robustly than it 
is with finite elements. This is important in a system that relies so heavily on reliability of 
automatic meshing. Furthermore, when a re-analysis is initiated after a geometric modification, it 
is straightforward (at least in a 2D problem) to revise the boundary element mesh to accommodate 
the change. It is principally for these reasons that the BEM was adopted as the analysis tool of 
choice for Concept Analyst. 
 
It should be noted that Concept Analyst does create an internal ‘mesh’ through the area of the 
material, in a similar way to finite elements. The vertices of this mesh are the locations of internal 
points, and the triangular mesh is used for the display of contours of results. At first sight, this 
might imply that it might be just as efficient to define a finite element mesh. To an extent this is 
true. However, the triangular mesh joining the internal points does not have to conform to finite 
element meshing rules. The triangles can be elongated or otherwise distorted without detracting 
from the results. Thus, although an internal ‘mesh’ is created for each analysis by Concept 
Analyst, there are still powerful reasons why boundary elements might be preferable for this 
application. 

FEM BEM 


